

NAGARJUNACOLLEGEOFENGINEERINGANDTECHNOLOGY NAAC Accredited with "A+" grade(AnISO9001 – 2008CertifiedInstitution) Affiliated to Visvesvaraya Technological University (VTU) Recognized by Govt.of Karnataka & Approved by A.I.C.T.E. New Delhi DEPARTMENT OF ELECTRONICS COMMUNICATION ENGINEERING

COURSE PLAN

(Tobesubmittedbeforecommencementofsemester)

CourseTitle:Basic Signals Processing	CourseCode: 22ECI33
CourseCredit:4	Semester:3 rd
CourseTeacher's: Dr. Vinay N A, Dr.Ravikumar M G	AcademicYear:2023-24
Lab.Instructor:NA	DateofCommencement ofClass: 17/11/2023

SUBJECTDESCRIPTION:

This introductory course on signals processing provides a foundational understanding of the fundamental concepts, techniques, and applications of signals in various engineering and scientific domains. Signals processing is a crucial aspect of many fields, including telecommunications, audio processing, image processing, and biomedical engineering. The course aims to equip students with the essential knowledge and skills to analyze, manipulate, and interpret signals.By the end of the course, students will have gained a solid foundation in basic signals processing, enabling them to apply these principles in various engineering and scientific disciplines.

PREREQUISITES:

- 1. Basic Electronics
- 2. Laplace Transforms

LECTUREPLAN:

Торіс	TopicDetails	Number ofLectur es	Prediction	Unit/Chapter Reference	Percentageof Modulecove rage	
	Definition of signal and systems	1		T1 2.3		
	Communication and control system as examples	2	Week 1	T1 4.1		
Module-I	Classification of signals	3	-	T1 4.2		
Introductio n and Classificatio n of signals, Elementary signals/Fun ctions and Basic Operations on signals	Exponential, sinusoidal, step, impulse and ramp functions	4		T1 4.3	2007	
	Triangular, rectangular and other waveforms in terms of elementary signals	5	Week 2	T1 4.4, 10.6	20%	
	Amplitude scaling, addition, multiplication, differentiation	6	Week 3	R2 7.2		
	scaling, time shift and time reversal	1	-	R2 7.4		
	Numerical	20%				
	Lincon	Cumulative			20%	
	nonlinear, Time variant-invariant	9		R2 3.2	20%	
Module-II	causal- noncausal, static-dynamic	10	Week 4	R2 3.3		
Classificatio	Stable-unstable, invertible	11		R2 3.4		
n and properties and Time domain representati on of LTI System	Impulse response, convolution sum using graphical method-unit step and unit step, unit step and exponential	12	Week 5	R2 3.6		
	using graphical method- exponential and	13		R2 3.5		

	exponential, unit				
	step and				
	rectangular				
	convolution sum				
	using graphical	14			
	method-			R1 13 2	
	rectangular and	11		R1 15.2	
	rootongular				
	integral using				
	graphical				
	method-	15		T1 13 5	
	exponential and	10	Week 6	11 15.5	
	exponential, unit				
	step and				
	rectangular				
	convolution				
	integral using				
	graphical				
	method-	16		T1 13.11	
	rectangular and				
	rectangular				
	Teetangular	Cumulative	Coverage		40%
	 AT 1		Wook 7		
A		17	WEEK /		2 00 (
	Computation of			T2 1.1	20%
	convolutionsum	18			
	using graphical				
	method for unit				
	step and unit				
	step, and		Wook 7		
Module-III	exponential		WCCK /		
	Computation of				
Time	convolution sum				
domain	using	19		T2 2.1	
representati	exponential and				
on of LTI	exponential				
System	Computation of				
andLTI	convolution sum	20			
system	using unit step	20		122.2	
Properties	and rectangular				
in terms of	System		Week 8		
impulse	interconnection				
response	Memory less	21		T2 2.4	
response	Causal				
	Computation of				
	sten response	22	Week 9	T2 2.5	
	step response	Cumulative	Coverage		60%
	Frequency		8		
wodule-1V	domain				
Diamete	compling and	22	Waal- 10		2007
Discrete	Sampling and	23	week 10	T2 5.3	20%
r ourier Tronsforms	Reconstruction				
11 alistorills	of Discrete Time				

(DFT)	Signals							
andPropertie	he Discrete	24						
s of the DF'T	Fourier							
	Transform							
	DFT as a linear	25						
	transformation							
	Numerical	26						
	Numerical	27						
	Periodicity,	28	Week 11					
	Linearity and		WEEK II	T2 5.4				
	Symmetry							
	properties							
	Circular	29						
	Convolution		Week 12					
	Additional DFT	30	WEEK 12	T2 5.5				
	properties							
	CumulativeCoverage							
А	AT-1	31	Week 13					
	DFT in Linear	32	Week 14	T2 8 2				
	Filtering			12 0.2				
	Filtering of Long	35		T2 8 3				
	data Sequences			12 0.5				
	Z-transform,	36						
Module-V	properties of the			T2.8.3				
	region of			12 0.0				
Linear	convergence							
filtering	Properties of the	37	Week 15	T1 8.4	20%			
methods	Z-transform							
based on the	Inverse Z-	38						
Transform	transform by			T1 8.4				
Tansiorm	partial fraction							
	Causality and	39		T10				
	stability and			11 0.4				
	I ransform							
	analysis of L11							
	systems	1000/						
	CumulativeCoverage 100%							

TEXTBOOKSANDREFERENCEBOOKS:

Book Code			PublicationInformation				
Туре	Code	Title& Author	Edition	Publisher	Year		
	T1	Simon Haykins and Barry Van Veen, "Signals and Systems"	2^{nd}	Wiley India	2008		
Text Books	T2	Proakis&Monalakis, "Digital signal processing	4 th	Pearson education	2007		
Poforone	R1	D.GaneshRao and Vineeth P Gejji, "Digital Signal Processing"	3 rd	Cengage India Private Limited	2017		
eBooks	R2	2. Alan V Oppenheim, Alan S, Willsky and A Hamid Nawab, "Signals and Systems"	2 nd	Pearson education	2002		

COURSEOUTCOMES:

Attheend of the course the student will be able to:

C01	Analyze the different types of signals and systems
CO2	Represent continuous and discrete systems in time and frequency domain using different
02	transforms Test whether the system is stable
CO3	Determine response of LTI systems using time domain and DFT techniques
CO4	Compute DFT of real and complex discrete time signals
CO5	Computation of DFT for linear filtering approach and Z –transform for the signals

CO-POMAPPING:

POS	DO1	DOJ	DO3	DO 4	DO5	DOC	DO7	DOP	DOD	DO10	DO11	DO12
COs	POI	PO2	PUS	PU4	P05	PU0	P07	PUð	P09	POIU	POII	PO12
C203.1	3	3	2	2	3							
C203.2	3	3	3	3	3							
C203.3	3	2	3	3	3							
C203.4	3	3	3	3	1							
C203.5	3	3	3	3	3							

EVALUATIONSCHEME:

Co	omponent	Weightage(%)					
CIE's	CIE15 th week	20					
	CIE210 th week	20	60	(Scaled down to 30 marks)30 marks			
AAT's	AAT1(Quiz)	20		(Scaled down to 20			
	AAT2(Surprisetest)	20	40	marks)20 marks			
ContinuousInternal Evaluation Total Marks:100.Reducedto50 Marks TheminimumpassingmarkfortheCIEis40%of themaximummarks(20marksoutof 50)							
SemesterEndExamination(SEE)TotalMarks:100.Reduced to50Marks Theminimum passingmark fortheSEEis35% ofthemaximummarks(18marksoutof 50)							

Signature of the Course Co-Ordinator

Signature of the HOD

Date:

Note:

- 1. The Course plan is an attempt to ensure **continuous improvement** in the TLP of the course.
- 2. The proposed Course Planis submitted to **DAC** before the commencement of these mester.
- 3. Attheend of these mester, the faculty shall submit the actual implemented plan.
- 4. CalendarofEventsincluded.