

NAGARJUNA COLLEGE OF ENGINEERING AND TECHNOLOGY NAAC Accredited with "A" grade (An ISO 9001 – 2008 Certified Institution) Affiliated to Visvesvaraya Technological University (VTU) Recognized by Govt. of Karnataka & Approved by A.I.C.T.E. New Delhi DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Course Handout

General Handout for all courses appended to the time table

Course No. : 22ECT34	Dept.: Electronics and Communication				
	Engineering				
Course Title : Analog Electronic Circuits	Semester: III rd				
Instructor-in-charge :	Academic Year: 2023-24				
Mrs. Bhargavi K V					
bhargavi.kv@ncetmail.com					
Mr. Yashodhara C L					
<u>yashodhara.cl@ncetmail.com</u>					

Subject Description:

Analog electronics is a branch of electronics that deals with a continuously variable signal. It's widely used in radio and audio equipment along with other applications where signals are derived from analog sensors before being converted into digital signals for subsequent storage and processing. Although digital circuits are considered as a dominant part of today's technological world, some of the most fundamental components in a digital system are actually analog in nature. Analog circuits can be defined as a complex combination of op amps, resistors, caps, and other basic electronic components. These circuits can be as simple as a combination of two resistors to make a voltage divider or elegantly built with many components. Such circuits can attenuate, amplify, isolate, modify, distort the signal, or even convert the original one into a digital signal.

Text Books

1. Albert Malvino, David J Bates, Electronic Principles, 7th Edition, Mc Graw Hill Education, 2017, ISBN:978-0-07 063424-4.

2. Microelectronic Circuits, Theory and Applications, Adel S Sedra, Kenneth C Smith, 5th Edition, Oxford, 2015.ISBN:978-0-19-808913-1.

3. Op-amps and Linear Integrated Circuits, Ramakant A Gayakwad, 4th Edition, Pearson Education, 2018. ISBN: 978-93-325-4991-3.

REFERENCE BOOKS:

1. Integrated Electronics: Analog and Digital Circuits and Systems, Jacob Millman, Christos C. Halkias, McGraw-Hill, 2015.

2. Electronic Devices and Circuit, Boylestad & Nashelsky, Eleventh Edition, Pearson, January 2015.

3. Analog Electronic Circuits, U B Mahadevaswamy, PEARSON, ISBN 978-81-317-3234-2, Sixth Edition.

PREREQUISITES:

1.Basic Electronics	2	Remarks Students have completed this Courses

LECTURE PLAN:

Торіс	Topic Details	Number of	Unit/ Chapter Reference	
		Lectures		
	BJT models: Introduction	1	T1 7.1	
	Biasing in BJT	2	T1 7.5	
	Emitter Biased Amplifier	3	T1 7.9	
Module– I	Two transistor model	4	T1 8.2	
BJT models	Small signal operation and	5	T1 8.3	
	Models Collector current and			
	transconductance			
	Base current and input resistance	6	T1 8.6	
	Emitter current and input resistance			
	Voltage gain. Darlington	7	T1 9.6	
	Connections			
	Voltage regulation.	8	T1 9.7	
	Linear Op-amp Circuits: 2-input	9	T1 18.6	
	Summing Amplifier			
	D/A Converter	10	T1 20.1	
	Nonlinear Op-amp Circuits:	11	T1 21.1	
	Comparator with zero references.	10	T1 01 0	
Module – II Lincon On own Cincuit	Comparator without zero	12	T1 21.3	
Linear Op-amp Circuit		13	T1 21.4	
	Oscillator (Using BJT only): Generation of Sinusoidal	15	11 21.4	
	Oscillation using tank circuit			
	RC Phase Shift Oscillator	14	T1 21.5	
	Crystal Oscillator	14	T1 21.5	
	The 555 timer: Monostable	15	T1 21.0	
	Operation, Astable Operation.	10	11 21.7	
Revision				
AAT-1				

	Negative Feedback Op-amp:	17	T3 3.1
	General feedback structure		
	Properties of negative feedback, The	18	T3 3.2
	Four Basic Feedback Topologies		
	series-shunt, series-series	19	T3 3.2
Module – III	shunt-shunt and shunt-series	20	T3 3.3
Negative Feedback Op-	amplifiers (Qualitative Analysis		
amp	without practical circuits)		
	Active Filters: High and low Pass	21	T3 7.2
	Filters		
	Band-pass Filters	22	T3 7.3
	Band-stop Filters	23	T3 7.5
	First order low pass butter-worth	24	T3 7.8 7.9
	filter.		
	Thyristors: The four layer Diode	25	T113.1
	SCR	26	T113.1
	IGBTs	27	T113.2
	Other Thyristors	28	T113.4 13.6
Module– IV	Power Amplifiers: Amplifier terms,	29	T110.1
Thuristons and Dowon	classifications		
Thyristors and Power Amplifiers	Class A Operation	30	T110.3
Ampiniers	Class B operation, Class B push	31	T110.4
	pull emitter follower		
	Class C Operation	32	T110.8
Revision			
AAT-2			
	MOSFET Amplifier configuration:	33	T1 8.1
	Biasing in MOS amplifier circuits:		
	Fixing VGS	34	T18.2
Module –	Fixing VG	35	T18.2.1
VMOSFET	Drain to Gate feedback resistor.	36	T18.2.2
Amplifier	Basic configurations, characterizing	37	T18.3
configuration	amplifiers		
	CS amplifier with source resistance	38	T18.4
	CS amplifier without source resistance	39	T18.5
	The Common Gate Amplifier,	40	T18.5.1
	Source follower. (Text 2: 4.5.1,4.5.2,		
	4.5.3, 4.7.1-4.7.6)		

Course Outcomes

At the end of the course the student will be able to:

CO1	Analyze the characteristics of BJTs for switching and amplifier circuits.					
CO2	Design and interpret the applications of BJT with different circuit configurations and biasing					
	conditions.					
CO3	Distinguish the different feedback structures and filters.					
CO4	Illustrate the different power electronics components and its functions.					
CO5	Design and analyze the biasing circuits of MOSFETs.					

CO-PO MAPPING:

POS COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C204.1	3	3	2	2	1	-	-	-	2	1	1	1	3	1	1
C204.2	3	3	2	2	1	-	-	-	2	1	1	1	3	1	1
C204.3	3	3	2	2	1	-	-	-	2	1	1	1	3	2	1
C204.4	3	3	1	1	1	-	-	-	2	1	1	1	3	2	1
C204.5	3	2	1	1	1	-	-	-	2	1	1	1	2	2	1

Evaluation Scheme:

IPCC / Non- Ir	ntegrated Courses :						
Evaluation Type		Component	Max Marks	Marks reduced to	Min. Marks	Evaluation Details	
	Internal Assessment Tests(IAT)	IAT-1	25	25		Average of two IATs, Scaled down to 25 marks Minimum of two Assessment methods as per 220B4.2 of regulations ,	
Theory Component		IAT-2	25	25			
	Comprehensive Continuous	CCE-1	25				
	Evaluations (CCE)	CCE-2	25	25		Average of two CCEs, scaled down to 25 marks	
		50	20	Scale down marks of IAT and CCE to 20			
SEE			100	50	18	Conducted for 100 marks and scaled down to 50.	
CIE + SEE				100	40		

Notices: All notices will be displayed on NCET and in Department website. **Chamber Consultation Hour:** Wednesday 2:30Pm to 4:00 Pm

Makeup Policy: To be granted only in case of serious illness or emergency.

Email Policy: Communication through email. If you want to discuss anything, you are most welcome to meet me during chamber consultation hours or immediately after the class.

Academic queries/doubts can be posted in Moodle.

Mrs. Bhargavi K V Course-in-charge Dr.Nagesh K N HOD